Advertisement

Management Options for Congenitally Corrected Transposition: Which, When, and for Whom?

      Management strategies for congenitally corrected transposition of the great arteries (ccTGA) historically consisted of a physiologic repair, resulting in the morphologic right ventricle (mRV) supporting systemic circulation. This strategy persisted despite the development of heart failure by middle age because of the reasonable short-term outcomes, and the natural history of some patients with favorable anatomy (felt to demonstrate the mRV's ability to function in the long-term), and due to the less-than-optimal outcomes associated with anatomical repair. As outcomes with anatomical repair improved, and the long-term risk of systemic mRV dysfunction became apparent, more have begun to realize its advantages. In addition to the decision on whether or not to pursue anatomical repair, and the optimal timing, studies demonstrating the nuance to morphologic left ventricle retraining have demonstrated its feasibility. Further considerations in ccTGA have begun to be better understood, including: the management of a poorly functioning mRV, systemic tricuspid valve regurgitation, the utility of morphologic left ventricle outflow tract obstruction (native or surgically created) and pacing strategies. While some considerations are apparent: biventricular pacing is superior to univentricular, tricuspid regurgitation must be managed early with either progression towards anatomical repair (pulmonary artery banding if needed for retraining) or tricuspid replacement (not repair) based on the patient's age; others remain to be completely elucidated. Overall, the heterogeneity of ccTGA, as well as the unique presentation with each patient regarding ventricular and valvular function and center-to-center variability in management strategies has made the interpretation of published data difficult. That said, more recent long-term outcomes favor anatomical repair in most situations.

      Keywords

      Abbreviations:

      ccTGA (congenitally corrected transposition of the great arteries), D-TGA (dextro-transposition of the great arteries), mRV (morphologic right ventricle), mLV (morphologic left ventricle), VSD (ventricular septal defect), PS (pulmonary stenosis), CHB (complete heart block), PA (pulmonary artery), BiV (biventricular), TR (tricuspid regurgitation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Wallis G.A.
        • Debich-Spicer D.
        • Anderson R.H.
        Congenitally corrected transposition.
        Orphanet J Rare Dis. 2011; 6: 22
        • Wilkinson J.L.
        • Cochrane A.D.
        • Karl T.R.
        Congenital heart surgery nomenclature and database project: Corrected (discordant) transposition of the great arteries (and related malformations).
        Ann Thorac Surg. 2000; 69: S236-S248
        • Van Praagh R.
        What determines whether the great arteries are normally or abnormally related?.
        Am J Cardiol. 2016; 118: 1390-1398
        • Baruteau A.E.
        • Abrams DJ
        • Ho S.Y.
        • et al.
        Cardiac conduction system in congenitally corrected transposition of the great arteries and its clinical relevance.
        J Am Heart Assoc. 2017; 6https://doi.org/10.1161/JAHA.117.007759
        • Spigel Z.
        • Binsalamah Z.M.
        • Caldarone C.
        Congenitally corrected transposition of the great arteries: anatomic, physiologic repair, and palliation.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019; 22: 32-42
        • Chatterjee A.
        • Miller NJ
        • Cribbs MG.
        • et al.
        Systematic review and meta-analysis of outcomes of anatomic repair in congenitally corrected transposition of great arteries.
        World J Cardiol. 2020; 12: 427-436https://doi.org/10.4330/wjc.v12.i8.427
        • Kutty S.
        • Danford DA
        • Diller GP
        • et al.
        Contemporary management and outcomes in congenitally corrected transposition of the great arteries.
        Heart. 2018; 104: 1148-1155https://doi.org/10.1136/heartjnl-2016-311032
        • Filippov A.A.
        • Del Nido P.J.
        • Vasilyev N.V.
        Management of systemic right ventricular failure in patients with congenitally corrected transposition of the great arteries.
        Circulation. 2016; 134: 1293-1302
        • Graham Jr, T.P.
        • Bernard YD
        • Mellen BG
        • et al.
        Long-term outcome in congenitally corrected transposition of the great arteries: A multi-institutional study.
        J Am Coll Cardiol. 2000; 36: 255-261https://doi.org/10.1016/s0735-1097(00)00682-3
        • Termignon J.L.
        • Leca F.
        • Vouhe PR
        • et al.
        “Classic” repair of congenitally corrected transposition and ventricular septal defect.
        Ann Thorac Surg. 1996; 62: 199-206https://doi.org/10.1016/0003-4975(96)00344-x
        • Said S.M.
        • Burkhart H.M.
        • Schaff H.V.
        • Dearani J.A.
        Congenitally Corrected Transposition of Great Arteries: Surgical Options for the Failing Right Ventricle and/or Severe Tricuspid Regurgitation.
        World J Pediatr Congenit Heart Surg. 2011; 2: 64-79https://doi.org/10.1177/2150135110386977
        • Ilbawi M.N.
        • DeLeon S.Y.
        • Backer C.L.
        • et al.
        An alternative approach to the surgical management of physiologically corrected transposition with ventricular septal defect and pulmonary stenosis or atresia.
        J Thorac Cardiovasc Surg. 1990; 100: 410-415
        • de Leval M.R.
        • Bastos P.
        • Stark J.
        • et al.
        Surgical technique to reduce the risks of heart block following closure of ventricular septal defect in atrioventricular discordance.
        J Thorac Cardiovasc Surg. 1979; 78: 515-526
        • Hraska V.
        • Duncan B.W.
        • Mayer Jr, J.E.
        • et al.
        Long-term outcome of surgically treated patients with corrected transposition of the great arteries.
        J Thorac Cardiovasc Surg. 2005; 129: 182-191https://doi.org/10.1016/j.jtcvs.2004.02.046
        • Sano T.
        • Riesenfeld T.
        • Karl T.R.
        • Wilkinson J.L.
        Intermediate-term outcome after intracardiac repair of associated cardiac defects in patients with atrioventricular and ventriculoarterial discordance.
        Circulation. 1995; 92: II272-II278https://doi.org/10.1161/01.cir.92.9.272
        • Wissocque L.
        • Mondesert B.
        • Dubart A.E.
        Late diagnosis of isolated congenitally corrected transposition of the great arteries in a 92-year old woman.
        Eur J Cardiothorac Surg. 2016; 49: 1524-1525
        • Placci A.
        • Lovato L.
        • Bonvicini M.
        Congenitally corrected transposition of the great arteries in an 83-year-old asymptomatic patient: Description and literature review.
        BMJ Case Rep. 2014; (2014)bcr2014204228https://doi.org/10.1136/bcr-2014-204228
        • Kral Kollars C.A.
        • Gelehrter S.
        • Bove E.L.
        • Ensing G.
        Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries.
        Am J Cardiol. 2010; 105: 735-739https://doi.org/10.1016/j.amjcard.2009.10.066
        • Liu R.
        • Pang K.
        • Li S.
        • et al.
        The Fate of Congenitally Corrected Transposition of the Great Arteries Unoperated Before Adulthood.
        Ann Thorac Surg. 2020; https://doi.org/10.1016/j.athoracsur.2020.10.025
        • Helsen F.
        • De Meester P.
        • Van Keer J.
        • et al.
        Pulmonary outflow obstruction protects against heart failure in adults with congenitally corrected transposition of the great arteries.
        Int J Cardiol. 2015; 196: 1-6https://doi.org/10.1016/j.ijcard.2015.05.142
        • Metton O.
        • Gaudin R.
        • Ou P.
        • et al.
        Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries.
        Eur J Cardiothorac Surg. 2010; 38: 728-734https://doi.org/10.1016/j.ejcts.2010.03.065
        • Cools B.
        • Brown S.C.
        • Louw J.
        • et al.
        Pulmonary artery banding as 'open end' palliation of systemic right ventricles: an interim analysis.
        Eur J Cardiothorac Surg. 2012; 41: 913-918https://doi.org/10.1093/ejcts/ezr078
        • Ma K.
        • Gao H.
        • Hua Z.
        • et al.
        Palliative pulmonary artery banding versus anatomic correction for congenitally corrected transposition of the great arteries with regressed morphologic left ventricle: long-term results from a single center.
        J Thorac Cardiovasc Surg. 2014; 148: 1566-1571https://doi.org/10.1016/j.jtcvs.2013.12.044
        • Winlaw D.S.
        • McGuirk S.P.
        • Balmer C.
        • et al.
        Intention-to-treat analysis of pulmonary artery banding in conditions with a morphological right ventricle in the systemic circulation with a view to anatomic biventricular repair.
        Circulation. 2005; 111: 405-411https://doi.org/10.1161/01.CIR.0000153355.92687.FA
        • Lenoir M.
        • Bouhout I.
        • Gaudin R.
        • et al.
        Outcomes of the anatomical repair in patients with congenitally corrected transposition of the great arteries: lessons learned in a high-volume centre.
        Eur J Cardiothorac Surg. 2018; 54: 532-538https://doi.org/10.1093/ejcts/ezy116
        • Poirier N.C.
        • Mee R.B.
        Left ventricular reconditioning and anatomical correction for systemic right ventricular dysfunction.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2000; 3: 198-215https://doi.org/10.1053/tc.2000.6506
        • Lim H.G.
        • Lee J.R.
        • Kim Y.J.
        • et al.
        Outcomes of biventricular repair for congenitally corrected transposition of the great arteries.
        Ann Thorac Surg. 2010; 89: 159-167https://doi.org/10.1016/j.athoracsur.2009.08.071
        • Scherptong R.W.
        • Vliegen H.W.
        • Winter M.M.
        • et al.
        Tricuspid valve surgery in adults with a dysfunctional systemic right ventricle: repair or replace?.
        Circulation. 2009; 119: 1467-1472https://doi.org/10.1161/CIRCULATIONAHA.108.805135
        • Duncan B.W.
        • Mee R.B.
        Management of the failing systemic right ventricle.
        Semin Thorac Cardiovasc Surg. 2005; 17: 160-169https://doi.org/10.1053/j.semtcvs.2005.02.009
        • Bove E.L.
        • Ohye R.G.
        • Devaney E.J.
        • et al.
        Anatomic correction of congenitally corrected transposition and its close cousins.
        Cardiol Young. 2006; 16: 85-90https://doi.org/10.1017/s1047951106001399
        • Zartner P.A.
        • Schneider M.B.
        • Asfour B.
        • Hraska V.
        Enhanced left ventricular training in corrected transposition of the great arteries by increasing the preload.
        Eur J Cardiothorac Surg. 2016; 49: 1571-1576https://doi.org/10.1093/ejcts/ezv416
        • Sharma R.
        • Talwar S.
        • Marwah A.
        • et al.
        Anatomic repair for congenitally corrected transposition of the great arteries.
        J Thorac Cardiovasc Surg. 2009; 137 (e404): 404-412https://doi.org/10.1016/j.jtcvs.2008.09.048
        • Shin'oka T.
        • Kurosawa H.
        • Imai Y.
        • et al.
        Outcomes of definitive surgical repair for congenitally corrected transposition of the great arteries or double outlet right ventricle with discordant atrioventricular connections: risk analyses in 189 patients.
        J Thorac Cardiovasc Surg. 2007; 133 (1318-28, 1328 e1-4)
        • Langley S.M.
        • Winlaw D.S.
        • Stumper O.
        • et al.
        Midterm results after restoration of the morphologically left ventricle to the systemic circulation in patients with congenitally corrected transposition of the great arteries.
        J Thorac Cardiovasc Surg. 2003; 125: 1229-1241https://doi.org/10.1016/s0022-5223(02)73246-7
        • Hraska V.
        • Woods R.K.
        Anatomic Repair of Corrected Transposition of the Great Arteries: The Double Switch.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019; 22: 57-60https://doi.org/10.1053/j.pcsu.2019.02.003
        • Bautista-Hernandez V.
        • Marx GR
        • Gauvreau K.
        • et al.
        Determinants of left ventricular dysfunction after anatomic repair of congenitally corrected transposition of the great arteries.
        Ann Thorac Surg. 2006; 82 (discussion 2065-6): 2059-2065
        • Murtuza B.
        • Barron D.J.
        • Stumper O.
        • et al.
        Anatomic repair for congenitally corrected transposition of the great arteries: a single-institution 19-year experience.
        J Thorac Cardiovasc Surg. 2011; 142 (https://doi.org/10.1016/j.jtcvs.2011.08.016): 1348-1357.e1341
        • Hofferberth S.C.
        • Alexander M.E.
        • Mah D.Y.
        • et al.
        Impact of pacing on systemic ventricular function in L-transposition of the great arteries.
        J Thorac Cardiovasc Surg. 2016; 151: 131-138https://doi.org/10.1016/j.jtcvs.2015.08.064
        • Hraska V.
        • Vergnat M.
        • Zartner P.
        • et al.
        Promising Outcome of Anatomic Correction of Corrected Transposition of the Great Arteries.
        Ann Thorac Surg. 2017; 104: 650-656https://doi.org/10.1016/j.athoracsur.2017.04.050
        • Ilbawi M.N.
        • Ocampo C.B.
        • Allen B.S.
        • et al.
        Intermediate results of the anatomic repair for congenitally corrected transposition.
        Ann Thorac Surg. 2002; 73 (discussion 599-600): 594-599https://doi.org/10.1016/s0003-4975(01)03408-7
        • Imai Y.
        • Seo K.
        • Aoki M.
        • et al.
        Double-Switch operation for congenitally corrected transposition.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2001; 4: 16-33
        • Ly M.
        • Belli E.
        • Leobon B.
        • et al.
        Results of the double switch operation for congenitally corrected transposition of the great arteries.
        Eur J Cardiothorac Surg. 2009; 35 (discussion 883-4): 879-883
        • Devaney E.J.
        • Charpie J.R.
        • Ohye R.G.
        • Bove E.L.
        Combined arterial switch and Senning operation for congenitally corrected transposition of the great arteries: patient selection and intermediate results.
        J Thorac Cardiovasc Surg. 2003; 125: 500-507https://doi.org/10.1067/mtc.2003.158
        • Jacobs M.L.
        • Jacobs J.P.
        • Thibault D.
        • et al.
        Updating an Empirically Based Tool for Analyzing Congenital Heart Surgery Mortality.
        World J Pediatr Congenit Heart Surg. 2021; 12: 246-281https://doi.org/10.1177/2150135121991528
        • De Leon L.E.
        • Mery C.M.
        • Verm R.A.
        • et al.
        Mid-Term Outcomes in Patients with Congenitally Corrected Transposition of the Great Arteries: A Single Center Experience.
        J Am Coll Surg. 2017; 224: 707-715https://doi.org/10.1016/j.jamcollsurg.2016.12.029
        • Gaies M.G.
        • Goldberg C.S.
        • Ohye R.G.
        • et al.
        Early and intermediate outcome after anatomic repair of congenitally corrected transposition of the great arteries.
        Ann Thorac Surg. 2009; 88: 1952-1960https://doi.org/10.1016/j.athoracsur.2009.08.014
        • Reddy V.M.
        • McElhinney D.B.
        • Silverman N.H.
        • Hanley F.L.
        The double switch procedure for anatomical repair of congenitally corrected transposition of the great arteries in infants and children.
        Eur Heart J. 1997; 18: 1470-1477https://doi.org/10.1093/oxfordjournals.eurheartj.a015474
        • Alghamdi A.A.
        • McCrindle B.W.
        • Van Arsdell G.S.
        Physiologic versus anatomic repair of congenitally corrected transposition of the great arteries: meta-analysis of individual patient data.
        Ann Thorac Surg. 2006; 81: 1529-1535https://doi.org/10.1016/j.athoracsur.2005.09.035
        • Mainwaring R.D.
        • Patrick W.L.
        • Arunamata A.
        • et al.
        Left ventricular retraining in corrected transposition: Relationship between pressure and mass.
        J Thorac Cardiovasc Surg. 2020; 159: 2356-2366https://doi.org/10.1016/j.jtcvs.2019.10.053
        • Barrios P.A.
        • Zia A.
        • Pettersson G.
        • et al.
        Outcomes of treatment pathways in 240 patients with congenitally corrected transposition of great arteries.
        J Thorac Cardiovasc Surg. 2021; 161 (e1084): 1080-1093https://doi.org/10.1016/j.jtcvs.2020.11.164
        • Brawn W.J.
        • Barron D.J.
        • Jones T.J.
        • Quinn D.W.
        The fate of the retrained left ventricle after double switch procedure for congenitally corrected transposition of the great arteries.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008; : 69-73https://doi.org/10.1053/j.pcsu.2008.01.004
        • Myers P.O.
        • del Nido P.J.
        • Geva T.
        • et al.
        Impact of age and duration of banding on left ventricular preparation before anatomic repair for congenitally corrected transposition of the great arteries.
        Ann Thorac Surg. 2013; 96: 603-610https://doi.org/10.1016/j.athoracsur.2013.03.096
        • Quinn D.W.
        • McGuirk SP
        • Metha C
        • et al.
        The morphologic left ventricle that requires training by means of pulmonary artery banding before the double-switch procedure for congenitally corrected transposition of the great arteries is at risk of late dysfunction.
        J Thorac Cardiovasc Surg. 2008; 135 (1144 e1-2): 1137-1144
        • Stauber A.
        • Wey C.
        • Greutmann M.
        • et al.
        Left ventricular outflow tract obstruction and its impact on systolic ventricular function and exercise capacity in adults with a subaortic right ventricle.
        Int J Cardiol. 2017; 244: 139-142https://doi.org/10.1016/j.ijcard.2017.06.050
        • Toba S.
        • Sanders S.P.
        • Gauvreau K.
        • et al.
        Histopathologic Changes After Pulmonary Artery Banding for Retraining of Subpulmonary Left Ventricle.
        Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2021.06.034
        • van Son J.A.
        • Danielson G.K.
        • Huhta J.C.
        • et al.
        Late results of systemic atrioventricular valve replacement in corrected transposition.
        J Thorac Cardiovasc Surg. 1995; 109 (discussion 652-643): 642-652https://doi.org/10.1016/S0022-5223(95)70345-4
        • Koolbergen D.R.
        • Ahmed Y.
        • Bouma B.J.
        • et al.
        Follow-up after tricuspid valve surgery in adult patients with systemic right ventricles.
        Eur J Cardiothorac Surg. 2016; 50: 456-463https://doi.org/10.1093/ejcts/ezw059
        • Deng L.
        • Xu J.
        • Tang Y.
        • et al.
        Long-Term Outcomes of Tricuspid Valve Surgery in Patients With Congenitally Corrected Transposition of the Great Arteries.
        J Am Heart Assoc. 2018; 7https://doi.org/10.1161/JAHA.117.008127
        • Talwar S.
        • Ahmed T.
        • Saxena A.
        • et al.
        Morphology, surgical techniques, and outcomes in patients above 15 years undergoing surgery for congenitally corrected transposition of great arteries.
        World J Pediatr Congenit Heart Surg. 2013; 4: 271-277https://doi.org/10.1177/2150135113476717
        • Lundstrom U.
        • Bull C.
        • Wyse R.K.
        • Somerville J.
        The natural and "unnatural" history of congenitally corrected transposition.
        Am J Cardiol. 1990; 65: 1222-1229https://doi.org/10.1016/0002-9149(90)90978-a
        • Mongeon F.P.
        • Connolly H.M.
        • Dearani J.A.
        • et al.
        Congenitally corrected transposition of the great arteries ventricular function at the time of systemic atrioventricular valve replacement predicts long-term ventricular function.
        J Am Coll Cardiol. 2011; 57: 2008-2017https://doi.org/10.1016/j.jacc.2010.11.021
        • Beauchesne L.M.
        • Warnes C.A.
        • Connolly H.M.
        • et al.
        Outcome of the unoperated adult who presents with congenitally corrected transposition of the great arteries.
        J Am Coll Cardiol. 2002; 40: 285-290https://doi.org/10.1016/s0735-1097(02)01952-6
        • Bacha E.
        Patients with congenitally corrected transposition of the great arteries and systemic tricuspid valve regurgitation should be referred for surgical consultation as soon as the diagnosis of regurgitation is made.
        J Am Coll Cardiol. 2011; 57: 2018-2019https://doi.org/10.1016/j.jacc.2010.12.008
        • Gaydos S.S.
        • Capps C.D.
        • Judd R.N.
        • et al.
        Hemodynamic Impact of MitraClip Procedure for Systemic Tricuspid Regurgitation in Congenitally Corrected Transposition of Great Arteries: A Case Report.
        Cardiovasc Revasc Med. 2021; 28S: 114-117https://doi.org/10.1016/j.carrev.2020.08.034
        • Ott I.
        • Rumpf P.M.
        • Kasel M.
        • et al.
        Transcatheter Valve Repair in Congenitally Corrected Transposition of the Great Arteries.
        EuroIntervention. 2021; https://doi.org/10.4244/EIJ-D-20-01093
        • Luedike P.
        • Riebisch M.
        • Weymann A.
        • et al.
        Feasibility of a Novel Transcatheter Valve Repair System to Treat Tricuspid Regurgitation in ccTGA.
        JACC Case Rep. 2021; 3: 893-896https://doi.org/10.1016/j.jaccas.2021.04.024
        • Anderson R.H.
        • Becker A.E.
        • Arnold R.
        • Wilkinson J.L.
        The conducting tissues in congenitally corrected transposition.
        Circulation. 1974; 50: 911-923https://doi.org/10.1161/01.cir.50.5.911
        • Hosseinpour A.R.
        • et al.
        Congenitally corrected transposition: Size of the pulmonary trunk and septal malalignment.
        Ann Thorac Surg. 2004; 77: 2163-2166
        • Oliver J.M.
        • Gallego P.
        • Gonzalez A.E.
        • et al.
        Comparison of outcomes in adults with congenitally corrected transposition with situs inversus versus situs solitus.
        Am J Cardiol. 2012; 110: 1687-1691https://doi.org/10.1016/j.amjcard.2012.07.039
        • Yeo W.T.
        • Jarman J.W.
        • Li W.
        • et al.
        Adverse impact of chronic subpulmonary left ventricular pacing on systemic right ventricular function in patients with congenitally corrected transposition of the great arteries.
        Int J Cardiol. 2014; 171: 184-191https://doi.org/10.1016/j.ijcard.2013.11.128
        • Janousek J.
        • Tomek V.
        • Chaloupecky V.A.
        • et al.
        Cardiac resynchronization therapy: a novel adjunct to the treatment and prevention of systemic right ventricular failure.
        J Am Coll Cardiol. 2004; 44: 1927-1931https://doi.org/10.1016/j.jacc.2004.08.044
        • Jauvert G.
        • Rousseau-Paziaud J.
        • Villain E.
        • et al.
        Effects of cardiac resynchronization therapy on echocardiographic indices, functional capacity, and clinical outcomes of patients with a systemic right ventricle.
        Europace. 2009; 11: 184-190https://doi.org/10.1093/europace/eun319
        • Ruckdeschel E.S.
        • Quaife R.
        • Lewkowiez L.
        • et al.
        Preprocedural imaging in patients with transposition of the great arteries facilitates placement of cardiac resynchronization therapy leads.
        Pacing Clin Electrophysiol. 2014; 37: 546-553https://doi.org/10.1111/pace.12308
        • Sharma P.S.
        • Dandamudi G.
        • Herweg B.
        • et al.
        Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: A multicenter experience.
        Heart Rhythm. 2018; 15: 413-420https://doi.org/10.1016/j.hrthm.2017.10.014
        • Morina-Vazquez P.
        • Moraleda-Salas M.T.
        • Manovel-Sanchez A.J.
        • et al.
        Early improvement of left ventricular ejection fraction by cardiac resynchronization through His bundle pacing in patients with heart failure.
        Europace. 2020; 22: 125-132https://doi.org/10.1093/europace/euz296
        • Benson Jr., D.W.
        • Gallagher J.J.
        • Oldham H.N.
        • et al.
        Corrected transposition with severe intracardiac deformities with Wolff-Parkinson-White syndrome in a childElectrophysiologic investigation and surgical correction.
        Circulation. 1980; 61: 1256-1261https://doi.org/10.1161/01.cir.61.6.1256
        • Tseng W.C.
        • Huang C.N.
        • Chiu S.N.
        • et al.
        Long-term outcomes of arrhythmia and distinct electrophysiological features in congenitally corrected transposition of the great arteries in an Asian cohort.
        Am Heart J. 2021; 231: 73-81https://doi.org/10.1016/j.ahj.2020.10.057
        • Baker D.W.
        • Dennis M.R.
        • Zannino D.
        • et al.
        Path ahead for 'low risk' adolescents living with a Fontan circulation.
        Heart. 2020; https://doi.org/10.1136/heartjnl-2020-317619
        • Talwar S.
        • Bansal A.
        • Choudhary S.K.
        • et al.
        Results of Fontan operation in patients with congenitally corrected transposition of great arteriesdagger.
        Interact Cardiovasc Thorac Surg. 2016; 22: 188-193https://doi.org/10.1093/icvts/ivv316
        • Krummholz A.
        • Gottschalk I.
        • Geipel A.
        • et al.
        Prenatal diagnosis, associated findings and postnatal outcome in fetuses with congenitally corrected transposition of the great arteries.
        Arch Gynecol Obstet. 2021; 303: 1469-1481https://doi.org/10.1007/s00404-020-05886-8
        • Sharland G.
        • Tingay R.
        • Jones A.
        • Simpson J.
        Atrioventricular and ventriculoarterial discordance (congenitally corrected transposition of the great arteries): echocardiographic features, associations, and outcome in 34 fetuses.
        Heart. 2005; 91: 1453-1458https://doi.org/10.1136/hrt.2004.052548
        • Vorisek C.N.
        • Enzensberger C.
        • Willomeit S.
        • et al.
        Prenatal Diagnosis and Outcome of Congenital Corrected Transposition of the Great Arteries - A Multicenter Report of 69 Cases.
        Ultraschall Med. 2021; 42 (Pranatale Diagnose und Outcome der kongenitalen korrigierten Transposition der grossen Arterien - ein multizentrischer Bericht von 69 Fallen.): 291-296https://doi.org/10.1055/a-1069-7698
        • Reitz B.A.
        • Jamieson S.W.
        • Gaudiani V.A.
        • et al.
        Method for cardiac transplantation in corrected transposition of the great arteries.
        J Cardiovasc Surg (Torino). 1982; 23: 293-296
      1. Miller JR, Singh GK, Woodard PK, et al. 3D printing for preoperative planning and surgical simulation of ventricular assist device implantation in a failing systemic right ventricle. J Cardiovasc Comput Tomogr, 14(6), e172-e174 https://doi.org/10.1016/j.jcct.2020.04.008

        • Gregoric I.D.
        • Kosir R.
        • Smart F.W.
        • et al.
        Left ventricular assist device implantation in a patient with congenitally corrected transposition of the great arteries.
        Tex Heart Inst J. 2005; 32: 567-569
        • Huhta J.C.
        • Maloney J.D.
        • Ritter D.G.
        • et al.
        Complete atrioventricular block in patients with atrioventricular discordance.
        Circulation. 1983; 67: 1374-1377https://doi.org/10.1161/01.cir.67.6.1374