Advertisement

Stem Cell Therapy in Single-Ventricle Physiology: Recent Progress and Future Directions

      Current surgical and medical treatment options for single ventricle physiology conditions remain palliative. On the long term, despite treatment, the systemic ventricle has a significant risk of developing failure. There are unmet needs to develop novel treatment modalities to help ameliorate the ventricular dysfunction. Advances in the field of stem cell therapy have been promising for the treatment of heart failure. Numerous stem cell populations have been identified. Preclinical studies in small and large animal models provide evidence for effectiveness of this treatment modality and reveal several mechanisms of action by which stem cells exert their effect. Many clinical trials have been designed to further investigate the therapeutic potential that stem cell therapy may hold for pediatric populations with single ventricle physiology. In this review, we discuss the stem cell types used in these populations, some preclinical studies, and the clinical trials of stem cell therapy in single ventricle patients.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Bernstein D
        • Naftel D
        • Chin C
        • et al.
        Outcome of listing for cardiac transplantation for failed Fontan: A multi-institutional study.
        Circulation. 2006; 114: 273-280https://doi.org/10.1161/CIRCULATIONAHA.105.548016
        • Wehman B
        • Sharma S
        • Pietris N
        • et al.
        Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload.
        Am J Physiol - Hear Circ Physiol. 2016; 310: H1816-H1826https://doi.org/10.1152/ajpheart.00955.2015
        • Balsam LB
        • Wagers AJ
        • Christensen JL
        • Kofidis T
        • Weissmann IL
        • Robbins RC
        Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.
        Nature. 2004; 428: 668-673https://doi.org/10.1038/nature02460
        • Parmacek MS
        • Epstein JA
        Cardiomyocyte renewal.
        N Engl J Med. 2009; 361: 86https://doi.org/10.1056/NEJMcibr0903347
        • Bergmann O
        • Bhardwaj RD
        • Bernard S
        • et al.
        Evidence for cardiomyocyte renewal in humans.
        Science (80-). 2009; 324: 98-102https://doi.org/10.1126/science.1164680
        • Gnecchi M
        • Zhang Z
        • Ni A
        • Dzau VJ
        Paracrine mechanisms in adult stem cell signaling and therapy.
        Circ Res. 2008; 103: 1204-1219https://doi.org/10.1161/CIRCRESAHA.108.176826
        • Bittle GJ
        • Morales D
        • Deatrick KB
        • et al.
        Stem cell therapy for hypoplastic left heart syndrome.
        Circ Res. 2018; 123: 288-300https://doi.org/10.1161/CIRCRESAHA.117.311206
        • Sharma S
        • Mishra R
        • Bigham GE
        • et al.
        A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells.
        Circ Res. 2017; 120: 816-834https://doi.org/10.1161/CIRCRESAHA.116.309782
      1. Home - ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed October 15, 2020.

        • Pittenger MF
        • Mackay AM
        • Beck SC
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science (80-). 1999; 284: 143-147https://doi.org/10.1126/science.284.5411.143
        • Dominici M
        • Le Blanc K
        • Mueller I
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317https://doi.org/10.1080/14653240600855905
        • Hatzistergos KE
        • Quevedo H
        • Oskouei BN
        • et al.
        Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation.
        Circ Res. 2010; 107: 913-922https://doi.org/10.1161/CIRCRESAHA.110.222703
        • Hare JM
        • Fishman JE
        • Gerstenblith G
        • et al.
        Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial.
        JAMA - J Am Med Assoc. 2012; 308: 2369-2379https://doi.org/10.1001/jama.2012.25321
        • Hare JM
        • DiFede DL
        • Rieger AC
        • et al.
        Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial.
        J Am Coll Cardiol. 2017; 69: 526-537https://doi.org/10.1016/j.jacc.2016.11.009
        • Prat-Vidal C
        • Roura S
        • Farré J
        • et al.
        Umbilical cord blood-derived stem cells spontaneously express cardiomyogenic traits.
        Transplant Proc. 2007; 39: 2434-2437https://doi.org/10.1016/j.transproceed.2007.06.016
        • Kögler G
        • Sensken S
        • Airey JA
        • et al.
        A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.
        J Exp Med. 2004; 200: 123-135https://doi.org/10.1084/jem.20040440
        • Lee OK
        • Kuo TK
        • Chen WM
        • Der Lee K
        • Hsieh SL
        • Chen TH
        Isolation of multipotent mesenchymal stem cells from umbilical cord blood.
        Blood. 2004; 103: 1669-1675https://doi.org/10.1182/blood-2003-05-1670
        • Berger MJ
        • Adams SD
        • Tigges BM
        • et al.
        Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells.
        Cytotherapy. 2006; 8: 480-487https://doi.org/10.1080/14653240600941549
        • Nishiyama N
        • Miyoshi S
        • Hida N
        • et al.
        The Significant Cardiomyogenic Potential of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells In Vitro.
        Stem Cells. 2007; 25: 2017-2024https://doi.org/10.1634/stemcells.2006-0662
        • Correa A
        • Ottoboni GS
        • Senegaglia AC
        • et al.
        Expanded CD133+ cells from human umbilical cord blood improved heart function in rats after severe myocardial infarction.
        Stem Cells Int. 2018; 2018https://doi.org/10.1155/2018/5412478
        • Oommen S
        • Yamada S
        • Cantero Peral S
        • et al.
        Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload.
        Stem Cell Res Ther. 2015; 6https://doi.org/10.1186/s13287-015-0044-y
        • Bartolucci J
        • Verdugo FJ
        • González PL
        • et al.
        Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]).
        Circ Res. 2017; 121: 1192-1204https://doi.org/10.1161/CIRCRESAHA.117.310712
        • Barile L
        • Gherghiceanu M
        • Popescu LM
        • Moccetti T
        • Vassalli G
        Human cardiospheres as a source of multipotent stem and progenitor cells.
        Stem Cells Int. 2013; 2013https://doi.org/10.1155/2013/916837
        • Chimenti I
        • Smith RR
        • Li TS
        • et al.
        Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice.
        Circ Res. 2010; 106: 971-980https://doi.org/10.1161/CIRCRESAHA.109.210682
        • Smith RR
        • Barile L
        • Cho HC
        • et al.
        Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens.
        Circulation. 2007; 115: 896-908https://doi.org/10.1161/CIRCULATIONAHA.106.655209
        • Makkar RR
        • Smith RR
        • Cheng K
        • et al.
        Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial.
        Lancet. 2012; 379: 895-904https://doi.org/10.1016/S0140-6736(12)60195-0
        • Barreto S
        • Hamel L
        • Schiatti T
        • Yang Y
        • George V
        Cardiac progenitor cells from stem cells: Learning from genetics and biomaterials.
        Cells. 2019; 8https://doi.org/10.3390/cells8121536
        • Beltrami AP
        • Barlucchi L
        • Torella D
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776https://doi.org/10.1016/S0092-8674(03)00687-1
        • Agarwal U
        • Smith AW
        • French KM
        • et al.
        Age-dependent effect of pediatric cardiac progenitor cells after juvenile heart failure.
        Stem Cells Transl Med. 2016; 5: 883-892https://doi.org/10.5966/sctm.2015-0241
        • Bolli R
        • Chugh AR
        • D'Amario D
        • et al.
        Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial.
        Lancet. 2011; 378: 1847-1857https://doi.org/10.1016/S0140-6736(11)61590-0
        • The Lancet Editors
        Retraction—Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial (The Lancet (2011) 378(9806) (1847–1857), (S0140673611615900) (10.1016/S0140-6736(11)61590-0)).
        Lancet. 2019; 393: 1084https://doi.org/10.1016/S0140-6736(19)30542-2
        • Merino-González C
        • Zuñiga FA
        • Escudero C
        • et al.
        Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application.
        Front Physiol. 2016; 7: 24https://doi.org/10.3389/fphys.2016.00024
        • Boomsma RA
        • Geenen DL
        Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. Hofmann TG, ed.
        PLoS One. 2012; 7: e35685https://doi.org/10.1371/journal.pone.0035685
        • Koch S
        • Tugues S
        • Li X
        • Gualandi L
        • Claesson-Welsh L
        Signal transduction by vascular endothelial growth factor receptors.
        Biochem J. 2011; 437: 169-183https://doi.org/10.1042/BJ20110301
        • Kaga T
        • Kawano H
        • Sakaguchi M
        • Nakazawa T
        • Taniyama Y
        • Morishita R
        Hepatocyte growth factor stimulated angiogenesis without inflammation: Differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor.
        Vascul Pharmacol. 2012; 57: 3-9https://doi.org/10.1016/j.vph.2012.02.002
        • Anderson JD
        • Johansson HJ
        • Graham CS
        • et al.
        Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling.
        Stem Cells. 2016; 34: 601-613https://doi.org/10.1002/stem.2298
        • Okazaki T
        • Magaki T
        • Takeda M
        • et al.
        Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats.
        Neurosci Lett. 2008; 430: 109-114https://doi.org/10.1016/j.neulet.2007.10.046
        • Oltvai ZN
        • Milliman CL
        • Korsmeyer SJ
        Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.
        Cell. 1993; 74: 609-619https://doi.org/10.1016/0092-8674(93)90509-o
        • Tögel F
        • Weiss K
        • Yang Y
        • Hu Z
        • Zhang P
        • Westenfelder C
        Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury.
        Am J Physiol Renal Physiol. 2007; 292: F1626-F1635https://doi.org/10.1152/ajprenal.00339.2006
        • Ohkouchi S
        • Block GJ
        • Katsha AM
        • et al.
        Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1.
        Mol Ther. 2012; 20: 417-423https://doi.org/10.1038/mt.2011.259
        • Liu D
        • Huang L
        • Wang Y
        • et al.
        Human Stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. Peng T, ed.
        PLoS One. 2012; 7: e36994https://doi.org/10.1371/journal.pone.0036994
        • Guo Y
        • Yu Y
        • Hu S
        • Chen Y
        • Shen Z
        The therapeutic potential of mesenchymal stem cells for cardiovascular diseases.
        Cell Death Dis. 2020; 11: 349https://doi.org/10.1038/s41419-020-2542-9
        • Li X
        • Zhao H
        • Qi C
        • Zeng Y
        • Xu F
        • Du Y
        Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis.
        Protein Cell. 2015; 6: 735-745https://doi.org/10.1007/s13238-015-0196-7
        • Kishore R
        • Verma SK
        • Mackie AR
        • et al.
        Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts.
        PLoS One. 2013; 8: e60161https://doi.org/10.1371/journal.pone.0060161
        • Kumar SR
        Immune system in single ventricle patients-A complex nexus.
        World J Pediatr Congenit Heart Surg. 2017; 8: 683-684https://doi.org/10.1177/2150135117739830
        • Bartholomew A
        • Sturgeon C
        • Siatskas M
        • et al.
        Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.
        Exp Hematol. 2002; 30: 42-48https://doi.org/10.1016/s0301-472x(01)00769-x
        • Krueger TEG
        • Thorek DLJ
        • Denmeade SR
        • Isaacs JT
        • Brennen WN
        Concise review: Mesenchymal stem cell-based drug delivery: The good, the bad, the ugly, and the promise.
        Stem Cells Transl Med. 2018; 7: 651-663https://doi.org/10.1002/sctm.18-0024
        • Zhang Q-Z
        • Su W-R
        • Shi S-H
        • et al.
        Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing.
        Stem Cells. 2010; 28: 1856-1868https://doi.org/10.1002/stem.503
        • Selleri S
        • Bifsha P
        • Civini S
        • et al.
        Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming.
        Oncotarget. 2016; 7: 30193-30210https://doi.org/10.18632/oncotarget.8623
        • Hwu P
        • Du MX
        • Lapointe R
        • Do M
        • Taylor MW
        • Young HA
        Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation.
        J Immunol. 2000; 164: 3596-3599https://doi.org/10.4049/jimmunol.164.7.3596
        • Sheng H
        • Wang Y
        • Jin Y
        • et al.
        A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1.
        Cell Res. 2008; 18: 846-857https://doi.org/10.1038/cr.2008.80
        • Dalal J
        • Gandy K
        • Domen J
        Role of mesenchymal stem cell therapy in Crohn's disease.
        Pediatr Res. 2012; 71: 445-451https://doi.org/10.1038/pr.2011.56
        • Jiang X-X
        • Zhang Y
        • Liu B
        • et al.
        Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.
        Blood. 2005; 105: 4120-4126https://doi.org/10.1182/blood-2004-02-0586
        • Sotiropoulou PA
        • Perez SA
        • Gritzapis AD
        • Baxevanis CN
        • Papamichail M
        Interactions between human mesenchymal stem cells and natural killer cells.
        Stem Cells. 2006; 24: 74-85https://doi.org/10.1634/stemcells.2004-0359
        • Davies B
        • Elwood NJ
        • Li S
        • et al.
        Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training.
        Ann Thorac Surg. 2010; 89https://doi.org/10.1016/j.athoracsur.2009.10.035
        • Tarui S
        • Ishigami S
        • Ousaka D
        • et al.
        Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients with Single-Ventricle Physiology (TICAP) trial.
        J Thorac Cardiovasc Surg. 2015; 150 (e2): 1198-1208https://doi.org/10.1016/j.jtcvs.2015.06.076
        • Ishigami S
        • Ohtsuki S
        • Eitoku T
        • et al.
        Intracoronary Cardiac Progenitor Cells in Single Ventricle Physiology.
        Circ Res. 2017; 120: 1162-1173https://doi.org/10.1161/CIRCRESAHA.116.310253
        • Ambastha C
        • Bittle GJ
        • Morales D
        • et al.
        Regenerative medicine therapy for single ventricle congenital heart disease.
        Transl Pediatr. 2018; 7: 176-187https://doi.org/10.21037/tp.2018.04.01
        • Kaushal S
        • Wehman B
        • Pietris N
        • et al.
        Study design and rationale for ELPIS: A phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome.
        Am Heart J. 2017; 192: 48-56https://doi.org/10.1016/j.ahj.2017.06.009
        • Burkhart HM
        • Qureshi MY
        • Rossano JW
        • et al.
        Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections.
        J Thorac Cardiovasc Surg. 2019; 158: 1614-1623https://doi.org/10.1016/j.jtcvs.2019.06.001
        • Richardson JD
        • Bertaso AG
        • Psaltis PJ
        • et al.
        Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction.
        J Card Fail. 2013; 19: 342-353https://doi.org/10.1016/j.cardfail.2013.03.011
        • Urbanek K
        • Torella D
        • Sheikh F
        • et al.
        Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure.
        Proc Natl Acad Sci U S A. 2005; 102: 8692-8697https://doi.org/10.1073/pnas.0500169102
        • Mishra R
        • Vijayan K
        • Colletti EJ
        • et al.
        Characterization and functionality of cardiac progenitor cells in congenital heart patients.
        Circulation. 2011; 123: 364-373https://doi.org/10.1161/CIRCULATIONAHA.110.971622
        • Freyman T
        • Polin G
        • Osman H
        • et al.
        A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction.
        Eur Heart J. 2006; 27: 1114-1122https://doi.org/10.1093/eurheartj/ehi818
        • Furlani D
        • Ugurlucan M
        • Ong LL
        • et al.
        Is the intravascular administration of mesenchymal stem cells safe?. Mesenchymal stem cells and intravital microscopy.
        Microvasc Res. 2009; 77: 370-376https://doi.org/10.1016/j.mvr.2009.02.001
        • Vrtovec B
        • Poglajen G
        • Lezaic L
        • et al.
        Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy.
        Circulation. 2013; 128: S42-S49https://doi.org/10.1161/CIRCULATIONAHA.112.000230
        • Golpanian S
        • Schulman IH
        • Ebert RF
        • et al.
        Concise review: Review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease.
        Stem Cells Transl Med. 2016; 5: 186-191https://doi.org/10.5966/sctm.2015-0101