Advertisement
Research Article| Volume 16, ISSUE 1, P21-31, 2013

Download started.

Ok

Neonatal Cardiac Care, a Perspective

      Every year in the United States approximately 40,000 infants are born with congenital heart disease. Several of these infants require corrective or palliative surgery in the neonatal period. Mortality rates after cardiac surgery are highest amongst neonates, particularly those born prematurely. There are several reasons for the increased surgical mortality risk in neonates. This review outlines these risks, with particular emphasis on the relative immaturity of the organ systems in the term and preterm neonate.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

      1. Congenital heart defects.
        (Centers for Disease Control and Prevention; Atlanta, GA) (Accessed August 20, 2012)
        • Botto L.D.
        • Correa A.
        • Erickson J.D.
        Racial and temporal variations in the prevalence of heart defects.
        Pediatrics. 2001; 107: E32
        • Hoffman J.I.E.
        • Kaplan S.
        The incidence of congenital heart disease.
        JACC. 2002; 39: 1890-1900
        • Reller M.D.
        • Strickland M.J.
        • Riehle-Colarusso T.
        • et al.
        Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005.
        J Pediatr. 2008; 153: 807-813
        • van der Linde D.
        • Konings E.E.M.
        • Slager M.A.
        • et al.
        Birth prevalence of congenital heart disease worldwide.
        J Am Coll Cardiol. 2011; 58: 2241-2247
      2. Jacobs JP, Jacobs ML, Mavroudis C, et al. Executive summary: the Society of Thoracic Surgeons Congenital Heart Surgery Database - Fourteenth Harvest – (January 1, 2007–December 31, 2010). The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, NC, USA, Spring 2011 Harvest

        • Kaltman J.R.
        • Andropoulos D.B.
        • Checchia P.A.
        Report of the Pediatric Heart Network and National Heart, Lung, and Blood Institute Working Group on the perioperative management of congenital heart disease.
        Circulation. 2010; 121: 2766-2772
        • Costello J.M.
        • Polito A.
        • Brown D.W.
        • et al.
        Birth before 39 weeks gestation is associated with worse outcomes in neonates with heart disease.
        Pediatrics. 2010; 126: 277-284
        • Curzon C.L.
        • Milford-Beland S.
        • Li J.S.
        • et al.
        Cardiac surgery in infants with low birth weight is associated with increased mortality.
        J Thorac Cardiovasc Surg. 2008; 135: 546-551
        • Cnota J.F.
        • Gupta R.
        • Michelfelder E.C.
        • et al.
        Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks.
        J Pediatr. 2011; 159: 761-765
        • Tita A.T.
        • Landon M.B.
        • Spong C.Y.
        • et al.
        Timing of elective cesarean delivery at term and neonatal outcomes.
        N Engl J Med. 2009; 360: 111-120
        • Reddy U.M.
        • Bettegowda V.R.
        • Dias T.
        • et al.
        Term pregnancy: A period of heterogeneous risk for infant mortality.
        Obstet Gynecol. 2011; 117: 1279-1287
        • March of Dimes
        (March of Dimes, New York, NY. Accessed August 20, 2012)
        • Edelstone D.I.
        • Rudolph A.M.
        Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs.
        Am J Physiol. 1979; 237: H724-H729
        • Mielke G.
        • Benda N.
        Cardiac output and central distribution of blood flow in the human fetus.
        Circulation. 2001; 103: 1662-1668
        • Delivoria-Papadopoulos M.
        • McGowan J.E.
        Oxygen transport and delivery.
        in: Polin R.A. Fox W.W. Abman S.H. Fetal and Neonatal Physiology. Elsevier Saunders, Philadelphia, PA2011: 970-979
        • Rudolph A.M.
        Congenital Diseases of the Heart. Clinical-Physiological Considerations.
        Ed 3. Wiley-Blackwell, Chichester, West Sussex, UK2009
        • Ardrain G.M.
        • Dawes G.S.
        • Prichard M.M.L.
        • et al.
        The effect of ventilation of the foetal lungs upon the pulmonary circulation.
        J Physiol. 1952; 118: 12-22
        • Singer D.
        • Mühlfeld C.
        Perinatal adaptation in mammals: the impact of metabolic rate.
        Comp Biochem Physiol Part A. 2007; 148: 780-784
        • Dawes G.S.
        • Mott J.C.
        The increase in oxygen consumption of the lamb after birth.
        J Physiol. 1959; 146: 295-315
        • Hill J.R.
        • Rahimtulla K.A.
        Heat balance and the metabolic rate of new-born babies in relation to environmental temperature; and the effect of age and of weight on basic metabolic rate.
        J Physiol. 1965; 180: 239-265
        • Hulbert A.J.
        • Else P.L.
        Mechanisms underlying the cost of living in animals.
        Ann Rev Physiol. 2000; 62: 207-235
        • Anderson P.A.
        • Glick K.L.
        • Manring A.
        • et al.
        Developmental changes in cardiac contractility in fetal and postnatal sheep: in vitro and in vivo.
        Am J Physiol Heart Circ Physiol. 1984; 247: H371-H379
        • Riemenschneider T.A.
        • Brenner R.A.
        • Mason D.T.
        Maturational changes in myocardial contractile state of newborn lambs.
        Pediatr Res. 1981; 15: 349-356
        • Anderson P.A.
        • Manring A.
        • Glick K.L.
        • et al.
        Biophysics of the developing heart.
        Am J Obstet Gynecol. 1982; 143: 195-203
        • Breall J.A.
        • Rudolph A.M.
        • Heymann M.A.
        Role of thyroid hormone in postnatal circulatory and metabolic adjustments.
        J Clin Invest. 1984; 73: 1418-1424
        • Murphy B.E.
        Human fetal serum cortisol levels related to gestational age: evidence of a midgestational fall and a steep late gestational rise, independent of sex or mode of delivery.
        Am J Obstet Gynecol. 1982; 144: 276-282
        • Grant D.A.
        • Kondo C.S.
        • Maloney J.E.
        • et al.
        Changes in pericardial pressure during the perinatal period.
        Circulation. 1992; 86: 1615-1621
        • Grant D.A.
        Ventricular constraint in the fetus and newborn.
        Can J Cardiol. 1999; 15: 95-104
        • Teitel D.F.
        • Sidi D.
        • Chin T.
        • et al.
        Developmental changes in myocardial contractile reserve in the lamb.
        Pediatr Res. 1985; 19: 948-955
        • Davies P.
        • Dewar J.
        • Tynan M.J.
        Post-natal developmental changes in the length-tension relationship of cat papillary muscles.
        J Physiol. 1975; 253: 95-102
        • Sheridan D.J.
        • Cullen M.J.
        • Tynan M.J.
        Qualitative and quantitative observations on ultrastructural changes during postnatal development in the cat myocardium.
        J Mol Cell Cardiol. 1979; 11: 1173-1181
        • Nassar R.
        • Reedy M.C.
        • Anderson P.A.W.
        Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte.
        Circ Res. 1987; 61: 465-483
        • Anderson P.A.W.
        The heart and development.
        Semin Perinatol. 1996; 20: 482-509
        • Artman A.
        • Mahony L.
        • Teitel D.F.
        Neonatal Cardiology.
        Ed 2. McGraw-Hill, New York, NY2011
        • Friedman W.F.
        The intrinsic physiologic properties of the developing heart.
        Prog Cardiovasc Dis. 1972; 15: 87-111
        • Cummins P.
        • Lambert S.J.
        Myosin transitions in the bovine and human heart.
        Circ Res. 1986; 58: 846-858
        • Lompre A.M.
        • Mercadier J.J.
        • Wisnewsky C.
        • et al.
        Species and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals.
        Dev Biol. 1981; 84: 286-290
        • Mahony L.
        • Jones L.R.
        Developmental changes in cardiac sarcoplasmic reticulum in sheep.
        J Biol Chem. 1986; 261: 15257-15265
        • Pegg W.
        • Michalak M.
        Differentiation of sarcoplasmic reticulum during cardiac myogenesis.
        Am J Physiol. 1987; 252: H22-H31
        • Mahony L.
        Maturation of calcium transport in cardiac sarcoplasmic reticulum.
        Pediatr Res. 1988; 24: 639-643
        • Kaufman T.M.
        • Horton J.W.
        • White D.J.
        • et al.
        Age-related changes in myocardial relaxation and sarcoplasmic reticulum function.
        Am J Physiol. 1990; 259: H309-H316
        • Fisher D.J.
        • Tate C.A.
        • Phillips S.
        Developmental regulation of the sarcoplasmic reticulum calcium pump in the rabbit heart.
        Pediatr Res. 1992; 31: 474-479
        • Balaguru D.
        • Haddock P.S.
        • Puglisi J.L.
        • et al.
        Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes.
        J Mol Cell Cardiol. 1997; 29: 2747-2757
        • Friedman W.F.
        • Pool P.E.
        • Jacobowitz D.
        • et al.
        Sympathetic innervation of the developing rabbit heart: biochemical and histochemical comparisons of fetal, neonatal and adult myocardium.
        Circ Res. 1968; 23: 25-32
        • Braunwald E.
        • Chidsey C.A.
        • Harrison D.C.
        • et al.
        Studies on the function of the adrenergic nerve endings in the heart.
        Circulation. 1963; 28: 958-969
        • Glowtnski J.
        • Axjelhod J.
        • Kopin I.
        • et al.
        Physiological disposition of H3-norepinephrine in the developing rat.
        J Pharmacol Exptl Ther. 1964; 146: 48-53
        • Robinson R.B.
        Autonomic receptor–effector coupling during post-natal development.
        Cardiovasc Res. 1996; 31: E68-E76
        • Kojima M.
        • Sperelakis N.
        • Sada H.
        Ontogenesis of transmembrane signaling systems for control of cardiac Ca2+ channels.
        J Dev Physiol. 1990; 14: 181-219
        • Artman M.
        • Kithas P.A.
        • Wike J.S.
        • et al.
        Inotropic responses change during postnatal maturation in rabbit.
        Am J Physiol. 1988; 255: H335-H342
        • Hopkins S.F.
        • McCutcheon E.P.
        • Wekstein D.R.
        Postnatal changes in rat ventricular function.
        Circ Res. 1973; 32: 685-691
        • Park M.K.
        • Sheridan P.H.
        • Morgan W.W.
        • et al.
        Comparative inotropic response of newborn and adult rabbit papillary muscles to isoproterenol and calcium.
        Dev Pharmacol Ther. 1980; 1: 70-82
        • Park I.S.
        • Michael L.H.
        • Driscoll D.J.
        Comparative response of the developing canine myocardium to inotropic agents.
        Am J Physiol Heart Circ Physiol. 1982; 242: H13-H18
        • Starling E.H.
        The Linacre Lecture on the Law of the Heart.
        Longmans, Green and Co., London, UK1918
        • Downing S.E.
        • Talner N.D.
        • Gardner T.H.
        Ventricular function in the newborn lamb.
        Am J Physiol. 1965; 260: 931-937
        • Kirkpatrick S.E.
        • Pitlick P.T.
        • Naliboff J.
        • et al.
        Frank-Starling relationship as an important determinant of fetal cardiac output.
        Am J Physiol. 1976; 231: 495-500
        • Klopfenstein H.S.
        • Rudolph A.M.
        Postnatal changes in the circulation and response to volume loading in sheep.
        Circ Res. 1978; 42: 839-845
        • Romero T.E.
        • Friedman W.F.
        Limited left ventricular response to volume overload in the neonatal period: a comparative study with the adult animal.
        Pediatr Res. 1979; 13: 910-915
        • Riemenschneider T.A.
        • Allen H.D.
        • Mason D.T.
        Maturational changes in myocardial pump performance in newborn lambs.
        Am Heart J. 1986; 111: 731-736
        • Brady A.J.
        Mechanical properties of isolated cardiac myocytes.
        Physiol Rev. 1991; 71: 413-428
        • Pelouch V.
        • Dixon I.M.
        • Golfman I.
        • et al.
        Role of extracellular matrix proteins in heart function.
        Mol Cell Biol. 1993; 129: 101-120
        • Granzier H.L.M.
        • Irving T.
        Passive tension in cardiac muscle: the contribution of collagen, titin, microtubules and intermediate filaments.
        Biophys J. 1995; 68: 1027-1044
        • Romero T.
        • Covell J.
        • Friedman W.F.
        A comparison of pressure-volume relations of the fetal, newborn and adult heart.
        Am J Physiol. 1972; 222: 1285-1290
        • Mantilla C.B.
        • Fahim M.A.
        • Sieck G.
        Functional development of respiratory muscles.
        in: Polin R.A. Fox W.W. Abman S.H. Fetal and Neonatal Physiology. Ed 4. Elsevier Saunders, Philadelphia, PA2011: 937-952
        • Papastamelos C.
        • Panitch H.B.
        • England S.E.
        • et al.
        Developmental changes in chest wall compliance in infancy and childhood.
        J Appl Physiol. 1995; 78: 179-184
        • Vogt B.A.
        • Mac Rae Dell K.
        • Davis I.D.
        The kidney and urinary tract.
        in: Fanaroff A.A. Martin R.J. Neonatal Perinatal Medicine. Diseases of the Fetus and Infant. Ed 2. Mosby Elsevier, Philadelphia, PA2006: 1659-1683
        • Chevalier R.L.
        • Norwood V.F.
        Functional development of the kidney in utero.
        in: Polin R.A. Fox W.W. Abman S.H. Fetal and Neonatal Physiology. Ed 4. Elsevier Saunders, Philadelphia, PA2011: 1316-1322
        • Polacek E.
        • Vocel J.
        • Neugebauerova L.
        • et al.
        The osmotic concentrating ability in healthy infants and children.
        Arch Dis Child. 1965; 40: 291-295
        • Power G.G.
        • Blood A.B.
        Perinatal thermal physiology.
        in: Polin R.A. Fox W.W. Abman S.H. Fetal and Neonatal Physiology. Ed 4. Elsevier Saunders, Philadelphia, PA2011: 615-624
        • Sahni R.
        • Schulze K.
        Temperature control in newborn infants.
        in: Polin R.A. Fox W.W. Abman S.H. Fetal and Neonatal Physiology. Ed 4. Elsevier Saunders, Philadelphia, PA2011: 624-648
        • Kapur R.
        • Yoder M.C.
        • Polin R.A.
        Developmental Immunology.
        in: Fanaroff A.A. Martin R.J. Neonatal Perinatal Medicine. Diseases of the Fetus and Infant. Ed 2. Mosby Elsevier, Philadelphia, PA2006: 761-882
        • Shen I.
        • Giacomuzzi C.
        • Ungerleider R.M.
        Current strategies for optimizing the use of cardiopulmonary bypass in neonates and infants.
        Ann Thorac Surg. 2003; 75: 729-734
        • Usher R.
        • Shephardz M.
        • Lind J.
        The blood volume of the newborn infant and placental transfusion.
        Acta Pediatrica. 1963; 52: 497-512
        • Levy J.H.
        • Tanaka K.A.
        Inflammatory response to cardiopulmonary bypass.
        Ann Thorac Surg. 2003; 75: 715-720
        • Paparella D.
        • Yau T.M.
        • Young E.
        Cardiopulmonary bypass induced inflammation: pathophysiology and treatment.
        Eur J Cardiothorac Surg. 2002; 21: 232-244
        • Anand A.J.S.
        • Hansen D.D.
        • Hickey P.R.
        Hormonal-metabolic stress responses in neonates undergoing cardiac surgery.
        Anesthesiology. 1991; 73: 661-670
        • Sun L.S.
        • Du F.
        • Schechter W.S.
        • et al.
        Plasma neuropeptide Y and catecholamines in pediatric patients undergoing cardiac operations.
        J Thorac Cardiovasc Surg. 1997; 113: 278-284
        • Seri I.
        Cardiovascular, renal and endocrine actions of dopamine in neonates and children.
        J Pediatr. 1995; 126: 333-344
        • Driscoll D.J.
        • Gillette P.C.
        • McNamara D.G.
        The use of dopamine in children.
        J Pediatr. 1978; 92: 309-314
        • Lang P.
        • Williams R.G.
        • Norwood W.I.
        • et al.
        The hemodynamic effects of dopamine in infants after corrective cardiac surgery.
        J Pediatr. 1980; 96: 630-663
        • Noori S.
        • Seri I.
        Neonatal blood pressure support: The use of inotropes, lusiotropes and other vasopressor agents.
        Clin Perinatol. 2012; 39: 221-238
        • Seri I.
        • Rudas G.
        • Bors Z.
        • et al.
        Effects of low-dose dopamine infusion on cardiovascular and renal functions, cerebral blood flow, and plasma catecholamine levels in sick preterm neonates.
        Pediatr Res. 1993; 34: 742-749
        • Bhatt-Mehta V.
        • Nahata M.C.
        • McClead R.E.
        • et al.
        Dopamine pharmacokinetics in critically ill newborn infants.
        Eur J Clin Pharmacol. 1991; 40: 593-597
        • Valverde E.
        • Pellicer A.
        • Madero R.
        • et al.
        Dopamine versus epinephrine for cardiovascular support in low birth weight infants: analysis of systemic effects and neonatal clinical outcomes.
        Pediatrics. 2006; 117: e1213-e1222
        • Caspi J.
        • Coles J.G.
        • Benson L.N.
        • et al.
        Age-related response to epinephrine-induced myocardial stress.
        Circulation. 1991; 84: III394-III399
        • Chang A.C.
        • Atz A.M.
        • Wernowsky G.
        • et al.
        Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery.
        Crit Care Med. 1995; 23: 1907-1914
        • Hoffman T.M.
        • Wernovsky G.
        • Atz A.M.
        • et al.
        Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease.
        Circulation. 2003; 107: 996-1002
        • Suominen P.K.
        • Dickerson H.A.
        • Moffett B.S.
        • et al.
        Hemodynamic effects of rescue protocol hydrocortisone in neonates with low cardiac output syndrome after cardiac surgery.
        Pediatr Crit Care Med. 2005; 6: 655-659
        • Landry D.W.
        • Oliver J.A.
        The pathogenesis of vasodilatory shock.
        N Engl J Med. 2001; 345: 588-595
        • Sassidharan P.
        Role of corticosteroids in neonatal blood pressure homeostasis.
        Clin Perinatol. 1998; 25: 723-740
        • Seri I.
        • Tan R.
        • Evans J.
        Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension.
        Pediatrics. 2001; 107: 1070-1074
        • Shore S.
        • Nelson D.P.
        • Pearl J.M.
        • et al.
        Usefulness of corticosteroid therapy in decreasing epinephrine requirements in critically ill infants with congenital heart disease.
        Am J Cardiol. 2001; 88: 591-594
        • Argenziano M.
        • Chen J.M.
        • Choudhri A.F.
        Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent.
        J Thorac Cardiovasc Surg. 1998; 116: 973-980
        • Rosenzweig E.B.
        • Starc T.J.
        • Chen J.M.
        • et al.
        Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery.
        Circulation. 1999; 100: II182-II186
        • Singh S.
        • Ware G.
        • Kuschner W.G.
        • et al.
        perioperative intravascular fluid assessment and monitoring: a narrative review of established and emerging techniques.
        Anesthesiol Res Pract. 2011; (Article ID 231493, 11 pages; doi:10.1155/2011/231493)
        • Marik P.E.
        • Monnet X.
        • Teboul J.L.
        Hemodynamic parameters to guide fluid therapy.
        Ann Intens Care. 2011; 1 (doi:10.1186/2110-5820-1-1): 1
        • Marik P.E.
        • Baram M.
        • Vahid B.
        Does the central venous pressure predict fluid responsiveness?.
        Chest. 2008; 134: 172-178
        • Boldt J.
        • Lenz M.
        • Kumle B.
        • et al.
        Volume replacement strategies on intensive care units: results from a postal survey.
        Intens Care Med. 1998; 24: 147-151
        • Kastrup M.
        • Markewitz A.
        • Spies C.
        • et al.
        Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey.
        Acta Anaesthesiol Scand. 2007; 51: 347-358
        • The SAFE Study Investigators
        comparison of albumin and saline for fluid resuscitation in the intensive care unit.
        New Engl J Med. 2004; 350: 2247-2256
        • So K.W.
        • Fok T.F.
        • Ng P.C.
        • et al.
        Randomized controlled trial of colloid or crystalloid in hypotensive preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 1997; 76: F43-F46
        • Oca M.J.
        • Nelson M.
        • Donn S.M.
        Randomized trial of normal saline versus 5% albumin for the treatment of neonatal hypotension.
        J Perinatol. 2003; 23: 473-476
        • Lynch S.K.
        • Mullett M.D.
        • Graeber J.E.
        • et al.
        A comparison of albumin-bolus therapy versus normal saline-bolus therapy for hypotension in neonates.
        J Perinatol. 2008; 28: 29-33
        • Lobos A.T.
        • Lee S.
        • Menon K.
        Capillary refill time and cardiac output in children undergoing cardiac catheterization.
        Pediatr Crit Care Med. 2012; 13: 136-140
        • Leflore J.L.
        • Engle W.D.
        Capillary refill time is an unreliable indicator of cardiovascular status in term neonates.
        Adv Neonatal Care. 2005; 5: 147-154
        • Tweddell J.S.
        • Ghanayem N.S.
        • Mussatto K.A.
        • et al.
        Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome.
        Ann Thorac Surg. 2007; 84: 1301-1311
        • Villa C.R.
        • Marino B.S.
        • Jacobs J.P.
        • et al.
        Intensive care and perioperative management of neonates with functionally univentricular hearts.
        World J Pediatr Congenit Heart Surg. 2012; 3: 359-363
        • Hoffman G.M.
        • Ghanayem N.S.
        • Stuth E.A.
        • et al.
        NIRS-derived somatic and cerebral saturation difference provides non-invasive real-time hemodynamic assessment of cardiogenic shock and risk of anaerobic metabolism [abstract].
        Anesthesiology. 2004; 101: A1448
        • Ghanayem N.S.
        • Wernovsky G.
        • Hoffman G.
        Near- infrared spectroscopy as a hemodynamic monitor in critical illness.
        Pediatr Crit Care Med. 2011; 12: S27-S32
        • Allen M.
        Lactate and acid base as a hemodynamic monitor and markers of cellular perfusion.
        Pediatr Crit Care Med. 2011; 12: S43-S49
        • Brans Y.W.
        • Dweck H.S.
        • Harris H.B.
        • et al.
        Effect of open heart surgery on the body composition of infants and young children.
        Pediatr Res. 1981; 15: 1024-1028
        • Watts C.L.
        • Bruce M.C.
        Comparison of secretory component for immunoglobulin A with albumin as reference proteins in tracheal aspirate from preterm infants.
        J Pediatr. 1995; 127: 113-122
        • Pasquali S.
        • Li J.
        • He X.
        • et al.
        Perioperative methylprednisolone and outcome in neonates undergoing heart surgery.
        Pediatrics. 2012; 129: e385-e391
        • Bronicki R.A.
        • Backer C.L.
        • Baden H.P.
        • et al.
        Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children.
        Ann Thorac Surg. 2000; 69: 1490-1495
        • Lee K.S.
        • Dunn M.S.
        • Fenwick M.
        • et al.
        A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation.
        Biol Neonate. 1998; 73: 69-75
        • Pillow J.J.
        • Hillman N.
        • Moss T.J.M.
        Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs.
        Am J Respir Crit Care Med. 2007; 176: 63-69
        • Centers for Disease Control and Prevention
        (Atlanta, GA, USA. Accessed August 23, 2012)
        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research network.
        Pediatrics. 2010; 126: 443-456
        • Allen M.C.
        Neurodevelopmental outcomes of preterm infants.
        Curr Opin Neurol. 2008; 21: 123-128
        • Wood N.S.
        • Marlow N.
        • Costeloe K.
        • et al.
        Neurologic and developmental disability after extremely preterm birth. EPICure Study Group.
        N Engl J Med. 2000; 343: 378-384
        • Marlow N.
        • Wolke D.
        • Bracewell M.A.
        • et al.
        EPICure Study Group.
        N Engl J Med. 2005; 352: 9-19
        • Tanner K.
        • Sabrine N.
        • Wren C.
        Cardiovascular malformations among preterm infants.
        Pediatrics. 2005; 116: e833-e838
        • Laas E.
        • Lelong N.
        • Thieulin A.
        • et al.
        Preterm birth and congenital heart defects: a population-based study. The EPICARD Study Group.
        Pediatrics. 2012; 130: e829-e837
        • Archer J.M.
        • Yeager S.B.
        • Kenny M.J.
        • et al.
        Distribution of and mortality from serious congenital hart disease in very low birth weight infants.
        Pediatrics. 2011; 127: 293-299
        • Burri P.H.
        Structural aspects of prenatal and postnatal development and growth of the lung.
        in: McDonald J.A. Lung Growth and Development. Marcel Dekker, Inc, New York1997: 1-35
        • Jobe A.H.
        • Ikegami M.
        Lung development and function in preterm infants in the surfactant treatment era.
        Ann Rev Physiol. 2000; 62: 825-846
        • Avery M.E.
        • Mead J.
        Surface properties in relation to atelectasis and hyaline membrane disease.
        Am J Dis Child. 1959; 97: 517
        • Davis J.M.
        • Veness-Meehan K.
        • Notter R.H.
        • et al.
        Changes in pulmonary mechanics after the administration of surfactant to infants with respiratory distress syndrome.
        N Engl J Med. 1988; 319: 476-479
        • Jobe A.H.
        Pulmonary surfactant therapy.
        N Engl J Med. 1993; 328: 861-868
        • Engle W.A.
        American Academy of Pediatrics Committee on fetus and newborn. surfactant- replacement therapy for respiratory distress in the preterm and term neonate.
        Pediatrics. 2008; 121: 419-432
        • Fanaroff A.A.
        • Stoll B.J.
        • Wright L.L.
        • et al.
        Trends in neonatal morbidity and mortality for very low birth weight infants. NICHD Neonatal Research Network.
        Am J Obstet Gynecol. 2007; 196: 147.e1-147.e8
        • Koch J.
        • Hensley G.
        • Roy L.
        • et al.
        Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less.
        Pediatrics. 2006; 117: 1113-1121
        • Reddy V.M.
        • McElhinney D.B.
        • Sagrado T.
        • et al.
        Results of 102 cases of complete repair of congenital heart defects in patients weighing 700-2500 grams.
        J Thorac Cardiovasc Surg. 1999; 117: 324-331
        • Ades A.M.
        • Dominguez E.
        • Nicolson S.C.
        • et al.
        Morbidity and mortality after surgery for congenital heart disease in the infant born with low weight.
        Cardiol Young. 2010; 20: 8-17
        • Hickey E.J.
        • Nosikova Y.
        • Zhang H.
        • et al.
        Very low-birth-weight infants with congenital cardiac lesions: is there merit in delaying intervention to permit growth and maturation?.
        J Thorac Cardiovasc Surg. 2012; 143: 126-136
        • McGowan Jr, F.X.
        • Ikegami M.
        • del Nido P.J.
        • et al.
        Cardiopulmonary bypass significantly reduces surfactant activity in children.
        J Thorac Cardiovasc Surg. 1993; 106: 968-977
        • Paul D.A.
        • Greenspan J.S.
        • Davis D.A.
        • et al.
        The role of cardiopulmonary bypass and surfactant decompensation after surgery for congenital heart disease.
        J Thorac Cardiovasc Surg. 1999; 117: 1025-1026
        • Griese M.
        • Wilnhammer C.
        • Jansen S.
        • et al.
        Cardiopulmonary bypass reduces pulmonary surfactant activity in infants.
        J Thorac Cardiovasc Surg. 1999; 118: 237-244
        • Friedrich B.
        • Schmidt R.
        • Reiss I.
        • et al.
        Changes in biochemical and biophysical surfactant properties with cardiopulmonary bypass in children.
        Crit Care Med. 2003; 31: 284-290
        • Julian D.G.
        Treatment of cardiac arrest in acute myocardial ischemia and infarction.
        Lancet. 1961; 2: 840-844
        • Julian D.G.
        The history of coronary care units.
        Br Heart J. 1987; 57: 497-502
        • Burstein D.S.
        • Jacobs J.P.
        • Li J.S.
        • et al.
        Care models and associated outcomes in congenital heart surgery.
        Pediatrics. 2011; 127: 1482-1489
        • Donabedian A.
        The quality of care, how can it be assessed?.
        JAMA. 1988; 260: 1743-1748
        • Parry G.
        Replicating cardiac intensive care units: the importance of structure, process and outcomes.
        Pediatrics. 2011; 127: 1595-1596